Most Efficient Data Structures for Coding Interviews
Mastering data structures is key to cracking coding interviews at top tech companies like Google, Amazon, Meta, and Microsoft. Here’s a breakdown of the most efficient ones, their use cases, and why they matter.
1οΈβ£ Arrays π
β
Best for: Fast lookups, storing elements in contiguous memory
β
Operations:
- Access: O(1)
- Search: O(n) (unsorted), O(log n) (sorted with binary search)
- Insertion/Deletion: O(n) (worst case)
π‘ Common Interview Problems:
πΉ Two Sum (Leetcode 1)
πΉ Merge Intervals
πΉ Sliding Window problems
2οΈβ£ Linked Lists π
β
Best for: Dynamic memory allocation, efficient insertions/deletions
β
Operations:
- Access: O(n)
- Search: O(n)
- Insertion/Deletion: O(1) (at head or tail)
π‘ Common Interview Problems:
πΉ Reverse a Linked List (Leetcode 206)
πΉ Detect Cycle (Floyd’s Cycle Detection)
πΉ Merge Two Sorted Lists
3οΈβ£ Stacks π
β
Best for: LIFO (Last In, First Out) operations, backtracking, function calls
β
Operations:
- Push: O(1)
- Pop: O(1)
- Peek: O(1)
π‘ Common Interview Problems:
πΉ Valid Parentheses (Leetcode 20)
πΉ Next Greater Element
πΉ Min Stack (Leetcode 155)
4οΈβ£ Queues & Deques π
β
Best for: FIFO (First In, First Out) processing, BFS traversal
β
Operations:
- Enqueue: O(1)
- Dequeue: O(1)
- Peek: O(1)
Deque (Double-Ended Queue) π
β
Best for: Sliding window problems, efficient insertions/removals from both ends
β
Operations:
- Insert at front/back: O(1)
- Remove from front/back: O(1)
π‘ Common Interview Problems:
πΉ Implement Queue using Stacks (Leetcode 232)
πΉ Sliding Window Maximum (Leetcode 239)
πΉ BFS Traversal
5οΈβ£ Hash Maps & Hash Sets ποΈ
β
Best for: Fast lookups, removing duplicates, counting frequencies
β
Operations:
- Insert/Delete/Search: O(1) (average), O(n) (worst case with collisions)
π‘ Common Interview Problems:
πΉ Two Sum (Leetcode 1)
πΉ Longest Consecutive Sequence (Leetcode 128)
πΉ Group Anagrams
6οΈβ£ Trees π³
β
Best for: Hierarchical data, fast search, range queries
β
Types:
- Binary Search Tree (BST) – Sorted order operations
- AVL Tree / Red-Black Tree – Self-balancing BSTs
- Trie (Prefix Tree) – Used for searching words efficiently
β
Operations (BST):
- Search: O(log n) (balanced), O(n) (unbalanced)
- Insert/Delete: O(log n) (balanced)
π‘ Common Interview Problems:
πΉ Lowest Common Ancestor (LCA)
πΉ Binary Tree Level Order Traversal (Leetcode 102)
πΉ Serialize & Deserialize a Binary Tree
7οΈβ£ Heaps (Priority Queues) β°οΈ
β
Best for: Finding min/max elements efficiently
β
Operations:
- Insert: O(log n)
- Delete (extract min/max): O(log n)
- Peek: O(1)
π‘ Common Interview Problems:
πΉ Kth Largest Element (Leetcode 215)
πΉ Merge K Sorted Lists (Leetcode 23)
πΉ Top K Frequent Elements (Leetcode 347)
8οΈβ£ Graphs & Adjacency Lists π
β
Best for: Representing networks (social, road maps, etc.), pathfinding algorithms
β
Common Representations:
- Adjacency Matrix: O(1) edge lookup, O(V²) space
- Adjacency List: O(V+E) space (better for sparse graphs)
π‘ Common Interview Problems:
πΉ BFS & DFS Traversals
πΉ Dijkstra’s Algorithm (Shortest Path)
πΉ Detect Cycle in Graph
π Final Tips for Interviews:
β Know Time & Space Complexities π
β Practice with Leetcode, CodeSignal, or HackerRank π
β Use the right data structure for the problem π οΈ
β Explain your approach before coding π£οΈ