What are the most efficient data structures for coding interviews?
Arpit Nuwal

 

Most Efficient Data Structures for Coding Interviews

Mastering data structures is key to cracking coding interviews at top tech companies like Google, Amazon, Meta, and Microsoft. Here’s a breakdown of the most efficient ones, their use cases, and why they matter.


1️⃣ Arrays πŸ“Š

βœ… Best for: Fast lookups, storing elements in contiguous memory
βœ… Operations:

  • Access: O(1)
  • Search: O(n) (unsorted), O(log n) (sorted with binary search)
  • Insertion/Deletion: O(n) (worst case)

πŸ’‘ Common Interview Problems:
πŸ”Ή Two Sum (Leetcode 1)
πŸ”Ή Merge Intervals
πŸ”Ή Sliding Window problems


2️⃣ Linked Lists πŸ”—

βœ… Best for: Dynamic memory allocation, efficient insertions/deletions
βœ… Operations:

  • Access: O(n)
  • Search: O(n)
  • Insertion/Deletion: O(1) (at head or tail)

πŸ’‘ Common Interview Problems:
πŸ”Ή Reverse a Linked List (Leetcode 206)
πŸ”Ή Detect Cycle (Floyd’s Cycle Detection)
πŸ”Ή Merge Two Sorted Lists


3️⃣ Stacks πŸ“š

βœ… Best for: LIFO (Last In, First Out) operations, backtracking, function calls
βœ… Operations:

  • Push: O(1)
  • Pop: O(1)
  • Peek: O(1)

πŸ’‘ Common Interview Problems:
πŸ”Ή Valid Parentheses (Leetcode 20)
πŸ”Ή Next Greater Element
πŸ”Ή Min Stack (Leetcode 155)


4️⃣ Queues & Deques 🚎

βœ… Best for: FIFO (First In, First Out) processing, BFS traversal
βœ… Operations:

  • Enqueue: O(1)
  • Dequeue: O(1)
  • Peek: O(1)

Deque (Double-Ended Queue) πŸ”

βœ… Best for: Sliding window problems, efficient insertions/removals from both ends
βœ… Operations:

  • Insert at front/back: O(1)
  • Remove from front/back: O(1)

πŸ’‘ Common Interview Problems:
πŸ”Ή Implement Queue using Stacks (Leetcode 232)
πŸ”Ή Sliding Window Maximum (Leetcode 239)
πŸ”Ή BFS Traversal


5️⃣ Hash Maps & Hash Sets πŸ—„οΈ

βœ… Best for: Fast lookups, removing duplicates, counting frequencies
βœ… Operations:

  • Insert/Delete/Search: O(1) (average), O(n) (worst case with collisions)

πŸ’‘ Common Interview Problems:
πŸ”Ή Two Sum (Leetcode 1)
πŸ”Ή Longest Consecutive Sequence (Leetcode 128)
πŸ”Ή Group Anagrams


6️⃣ Trees 🌳

βœ… Best for: Hierarchical data, fast search, range queries
βœ… Types:

  • Binary Search Tree (BST) – Sorted order operations
  • AVL Tree / Red-Black Tree – Self-balancing BSTs
  • Trie (Prefix Tree) – Used for searching words efficiently

βœ… Operations (BST):

  • Search: O(log n) (balanced), O(n) (unbalanced)
  • Insert/Delete: O(log n) (balanced)

πŸ’‘ Common Interview Problems:
πŸ”Ή Lowest Common Ancestor (LCA)
πŸ”Ή Binary Tree Level Order Traversal (Leetcode 102)
πŸ”Ή Serialize & Deserialize a Binary Tree


7️⃣ Heaps (Priority Queues) ⛰️

βœ… Best for: Finding min/max elements efficiently
βœ… Operations:

  • Insert: O(log n)
  • Delete (extract min/max): O(log n)
  • Peek: O(1)

πŸ’‘ Common Interview Problems:
πŸ”Ή Kth Largest Element (Leetcode 215)
πŸ”Ή Merge K Sorted Lists (Leetcode 23)
πŸ”Ή Top K Frequent Elements (Leetcode 347)


8️⃣ Graphs & Adjacency Lists 🌍

βœ… Best for: Representing networks (social, road maps, etc.), pathfinding algorithms
βœ… Common Representations:

  • Adjacency Matrix: O(1) edge lookup, O(V²) space
  • Adjacency List: O(V+E) space (better for sparse graphs)

πŸ’‘ Common Interview Problems:
πŸ”Ή BFS & DFS Traversals
πŸ”Ή Dijkstra’s Algorithm (Shortest Path)
πŸ”Ή Detect Cycle in Graph


πŸš€ Final Tips for Interviews:

βœ” Know Time & Space Complexities πŸ“Š
βœ” Practice with Leetcode, CodeSignal, or HackerRank πŸ†
βœ” Use the right data structure for the problem πŸ› οΈ
βœ” Explain your approach before coding πŸ—£οΈ