Dynamic Programming (DP) can be challenging, but following a structured approach makes it easier to solve problems efficiently. Here’s a step-by-step guide to mastering DP:
pythonCopyEditdef fib(n, memo={}): if n <= 1: return n if n not in memo: memo[n] = fib(n-1, memo) + fib(n-2, memo) return memo[n]
def fib(n, memo={}): if n <= 1: return n if n not in memo: memo[n] = fib(n-1, memo) + fib(n-2, memo) return memo[n]
pythonCopyEditdef fib(n): dp = [0] * (n + 1) dp[1] = 1 for i in range(2, n + 1): dp[i] = dp[i-1] + dp[i-2] return dp[n]
def fib(n): dp = [0] * (n + 1) dp[1] = 1 for i in range(2, n + 1): dp[i] = dp[i-1] + dp[i-2] return dp[n]
pythonCopyEditdef fib(n): if n <= 1: return n prev2, prev1 = 0, 1 for _ in range(2, n + 1): curr = prev1 + prev2 prev2, prev1 = prev1, curr return prev1
def fib(n): if n <= 1: return n prev2, prev1 = 0, 1 for _ in range(2, n + 1): curr = prev1 + prev2 prev2, prev1 = prev1, curr return prev1
Master these common DP patterns: