How do you crack system design interview questions?
Arpit Nuwal

 

How to Crack System Design Interview Questions πŸš€

System design interviews test your ability to design scalable, efficient, and reliable systems. To ace them, you need to break down problems systematically and communicate your ideas effectively.


1️⃣ Understand the Requirements Clearly πŸ“Œ

Before jumping into designing, ask clarifying questions:

βœ… Functional requirements
βœ” What are the core features?
βœ” Any specific user interactions to handle?

βœ… Non-functional requirements
βœ” Expected scale (users per day, requests per second)
βœ” Latency expectations
βœ” Availability vs. Consistency trade-offs

πŸ”Ή Example Question: "Design a URL Shortener like Bit.ly."
βœ” Functional: Shorten URLs, retrieve original URLs
βœ” Non-functional: Low latency, high availability, analytics


2️⃣ Define System Constraints & Scale Estimation πŸ“Š

Estimate traffic, storage, and bandwidth to guide design decisions.

Key Metrics to Consider:

βœ” QPS (Queries Per Second) → How many requests per second?
βœ” Storage Needs → How much data to store per day/month/year?
βœ” Read vs. Write Ratio → Is the system read-heavy or write-heavy?

πŸ”Ή Example: URL Shortener Scale Estimation
βœ” 1 billion URLs in 5 years → ~1TB storage
βœ” 100M requests/day → ~1000 QPS

πŸ’‘ Rule of Thumb: Use back-of-the-envelope calculations to show you understand scale.


3️⃣ High-Level System Architecture πŸ—οΈ

Sketch the overall system using key components:

βœ… Load Balancers → Distribute traffic
βœ… APIs & Microservices → Handle requests
βœ… Databases → Store data (SQL vs. NoSQL)
βœ… Caching → Reduce database load (Redis, Memcached)
βœ… Messaging Queues → For async tasks (Kafka, RabbitMQ)
βœ… CDN (Content Delivery Network) → Reduce latency for global users

πŸ”Ή Example: Designing Instagram Feed System
βœ” Load Balancer → Distributes requests
βœ” Feed Generation Service → Ranks & fetches posts
βœ” Caching Layer (Redis) → Fast retrieval of popular feeds
βœ” Databases (NoSQL + SQL) → Store user data & media files
βœ” Message Queues (Kafka) → Process likes/comments in real time


4️⃣ Database Design & Storage πŸ—„οΈ

Choose the right database model based on system needs:

βœ… Relational (SQL - PostgreSQL, MySQL)
βœ” When ACID compliance is needed
βœ” Example: Banking Systems

βœ… NoSQL (MongoDB, Cassandra, DynamoDB)
βœ” When handling high-scale, unstructured data
βœ” Example: Social Media, Logging Systems

πŸ”Ή Example: Twitter’s Follower System
βœ” Store user profiles in SQL (structured data)
βœ” Store tweets in NoSQL (Cassandra) for high-speed writes
βœ” Use Graph DB (Neo4j) to manage followers

πŸ’‘ Tip: Denormalization and sharding help handle large-scale systems.


5️⃣ Caching for Speed Optimization ⚑

Caching improves performance and reduces database load.

βœ… Types of Caching
βœ” Application-level Cache → Store frequent queries
βœ” CDN (Cloudflare, Akamai) → Cache static files/images
βœ” Database Query Cache (Redis, Memcached) → Speed up lookups

πŸ”Ή Example: Netflix’s Video Streaming
βœ” CDN (AWS CloudFront) caches videos for fast streaming
βœ” Redis caches trending movies

πŸ’‘ Tip: Implement cache invalidation strategies carefully!


6️⃣ Load Balancing & Scalability 🌍

Distribute traffic to avoid bottlenecks and ensure high availability.

βœ… Load Balancing Strategies:
βœ” Round Robin – Simple, rotates requests
βœ” Least Connections – Directs traffic to least busy server
βœ” Geo-based Routing – Directs users to nearest server

πŸ”Ή Example: YouTube's Load Balancing
βœ” Global Load Balancer (Cloud Load Balancer) → Distributes user traffic
βœ” Regional Load Balancers → Handle video streaming

πŸ’‘ Tip: Use horizontal scaling (adding more machines) over vertical scaling (upgrading a single server).


7️⃣ Asynchronous Processing with Message Queues πŸ“¨

For background tasks, use message queues instead of blocking API calls.

βœ… Message Queue Options:
βœ” Kafka → High-throughput messaging
βœ” RabbitMQ → Task queues for async processing
βœ” AWS SQS → Serverless queue service

πŸ”Ή Example: Processing Instagram Notifications
βœ” Kafka handles async notifications (likes, comments)
βœ” Workers process the messages and update users

πŸ’‘ Tip: Message queues decouple services, improving scalability.


8️⃣ Security & Reliability πŸ”’

Ensure data protection & system reliability:

βœ… Security Best Practices:
βœ” Rate limiting (prevent abuse)
βœ” Data encryption (SSL/TLS)
βœ” OAuth & JWT authentication

βœ… Reliability Strategies:
βœ” Data replication (backup copies of data)
βœ” Failover mechanisms (switch to standby server if failure)
βœ” Monitoring & logging (track issues in real time)

πŸ”Ή Example: Banking System Security
βœ” Multi-Factor Authentication (MFA)
βœ” Read replicas for high availability


9️⃣ Trade-offs & Final Design Decisions βš–οΈ

Discuss why you chose a particular approach over others:

βœ… Consistency vs. Availability (CAP theorem)
βœ… SQL vs. NoSQL
βœ… Monolith vs. Microservices
βœ… Caching trade-offs (stale data risk)

πŸ”Ή Example: Designing a Ride-Sharing App
βœ” Consistency is critical → Choose SQL for transactions
βœ” Real-time tracking → Use WebSockets & NoSQL for geolocation

πŸ’‘ Tip: Clearly explain why you chose a solution.